Orthopedic Infectious Diseases Online Library

Your search

In authors or contributors
  • The Jupiter orbiting spacecraft Galileo has provided evidence that the Jovian magnetotail is subject to a periodic process with a typical timescale of several days by which the Jovian system is presumably releasing its excess iogenic mass. This process is analyzed using data returned from the Energetic Particles Detector (EPD), the magnetometer and plasma wave experiment on Galileo. The mass release process resembles a terrestrial substorm in the sense of a global reconfiguration of the magnetotail. During the initial "loading" phase the plasma convection is at a moderate speed in the corotational direction, and the Jovian plasma sheet appears to be in a stable configuration. In the release phase reconnection through a thinned current sheet leads to radially inward and outward plasma flows and the ejection of plasmoids. The striking difference from terrestrial substorms is the periodical appearance of the reconfiguration events. Such an intrinsic periodic behavior cannot readily be explained by a solar wind driven process. Therefore the role of the solar wind as energy source is of less importance than for terrestrial substorms. Instead, ion mass-loading from internal plasma sources and fast planetary rotation causes stretching of magnetotail field lines. The resulting magnetotail configuration favors magnetic reconnection. This leads to the formation and release of plasmoids. Continued mass-loading then again leads to stretching of tail field lines. Thus assuming that this quasi-periodical process is internally driven, a simple conceptual model to estimate the time period of the periodic reconfiguration process is constructed. The model shows that the suggested intrinsic mechanism can explain the observed several days periodicities of Jovian substorm-like processes.

Last update from database: 2/11/25, 9:08 PM (UTC)

Explore

Resource type